Section 2.2 Derivatives of Products and Quotients (Minimum Homework: all odds)

#1-12: Use the product rule to find the derivatives of the following.

1) y = (2x + 3)(3x - 4)2) y = (3x - 4)(5x - 8)3) f(x) = (x - 2)(3x - 4)4) $y = (x - 5)(3x^2 + 7)$ 5) $f(x) = (x^2 + 3x + 2)(3x - 5)$ 6) $f(x) = (3x^2 + 6x - 2)(4x + 1)$ 7) g(t) = (2t - 1)(3t + 5)8) $g(t) = (3t^2 + 5t)(2t + 1)$ 9) $y = 3x^2(2x^2 + 6x - 4)$ 10) $y = 4x^3(3x^2 + 7x - 5)$ 11) $y = (3x^4)(5x^2 + 7)$ 12) $y = (2x^5)(5x - 8)$

#13-20: Use the quotient rule to find the derivative of the following.

13) $f(x) = \frac{6}{5x+1}$ 14) $g(x) = \frac{4}{3x+11}$ 15) $y = \frac{9x}{x-5}$ 16) $y = \frac{12x}{5x-6}$ 17) $y = \frac{3t+1}{2t+5}$ 18) $y = \frac{2t+3}{4t+5}$ 19) $g(x) = \frac{x^2}{x-4}$ 20) $g(x) = \frac{x^2}{x-2}$

#21-26:

a) Find the slope of the tangent line to the graph of the function for the given value of x (or t).b) Find the equation of the tangent line to the graph of the function for the given value of x (or t).

21) y = (2x + 3)(3x - 4); x = 222) y = (3x - 4)(5x - 8); x = 323) g(t) = (2t - 1)(3t + 5); t = 424) $g(t) = (3t^2 + 5t)(2t + 1); t = -2$ 25) $f(x) = \frac{6}{5x+1}; x = 1$ 26) $g(x) = \frac{4}{3x+11}; x = -3$